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1 Introduction

1.1 Background and Motivation

Short-term stock market forecasting is a common challenge engaged by many millions of an-
alysts and investors daily. Stock market data is frequently non-linear and is influenced by
not only financial drivers but also geopolitical and macroeconomic policies and events. Ran-
dom Forest has demonstrated the ability to handle non-linear, heterogeneous features while
being explainable and resistant to overfitting. One basic issue with Random Forest models are
that they do not intrinsically have memory and so can miss opportunities that are based on
time-based influences in variables.



1.2 Link to Project Code

The Jupyter Notebook is available from https://github.com/dkrapohl/UWF__DataScience__Capstone/]

1.3 Research Problem

The objective is to use my course work, current literature, and intent on future research to
classify the market movement as either upward or downward. Because Random Forest has
no memory I will use both machine learning, time series modeling, and quantum circuits
to identify optimal lags and moving averages and introduce these variables during feature
engineering.

1.4 Research Objectives

I intend to develop a hybrid methodology combining ARMA feature engineering with Random
Forest classification, identify optimal lag structures and moving average windows through sys-
tematic time series analysis, evaluate model performance using multiple metrics, and determine
feature importance for market direction prediction.

1.5 Purpose of Study

I will use my coursework, readings, coding, and statistical knowledge to synthesize an approach
to analysis that, although not novel in academia, is new to me. I will not be using any of the
tools developed in my coursework to identify, train, tune, and measure the models I build so
that I may perform real-world analysis of a type I believe to be relevant to many datasets with
which I’'ve worked.

1.6 Scope and Limitations

The data will be from the United States Standard & Poor’s S&P 500 index covering 1990-
2024. The forward-looking limits will be 20 days and the predicted outcome will be binary
(up/down).


https://github.com/dkrapohl/UWF_DataScience_Capstone/blob/main/DS_Capstone.ipynb

1.7 Capstone Project Organization

This project will consist of a section covering the background, theory, recent research, and
explanation of: - Random Forest models - Auto Regressive Moving Average (ARMA) models
- Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) models of volatility -
Vector Autoregressive (VAR) models and Multivariate Time Series analysis - Hybrid models -
Quantum Random Forest

I will being with a literature review, provide a theoretical background, outline my methodol-
ogy and dataset, state dataset statistical information, perform feature engineering, train and
measure my models, review the findings, and discuss their implications.

2 Literature Review

2.1 Overview of Stock Market Prediction

Stock market prediction prior to the 1960s was based on technical or fundamental analysis,
both of which are used today. Technical analysis involves analyzing charts of stock prices to
look for long- and short-term cycles and patterns. Fundamental analysis is the use of company
and industry data including balance sheets, contracts, and forecasts to try to determine the
current and future value of a company. In the 1960s the Efficient Market Hypothesis (EMH)
was the most common theory of how market pricing worked. In this, the price of a stock
instantly reflected all information that could affect the price with the implication that con-
stant changes in price are largely random and unpredictable. In the 1980s more computing
power and advanced mathematical approaches identified subtle patterns within this “random-
ness” indicating the movements are not entirely random. Behavioral Economics showed that
human and group psychology provided one mechanism by which pricing changes could vio-
late the Efficient Market Hypothesis. The development of Autoregressive Integrated Moving
Average (ARIMA) models provided the ability to forecast with more quantitative rigor. In
the 2000s computing power and algorithm development advanced further leading to machine
learning developments including Random Forest, Support Vector Machines, Recurrent Neural
Networks, and Long- Short-term memory (LSTM) models the latter of which benefitted from
both temporal memory as well as the ability to “forget” weakly interacting data points.

2.2 SARIMA and ARIMA Time Series Model Development

There were some foundational research projects in the 1920s that set the stage for the devel-
opment of Seasonal Autoregressive Integrated Moving Average (SARIMA), a form of ARIMA
in 1970 in part by Box and Jenkins (Box et al. 2015). SARIMA adds seasonality to ARIMA
models and tries to find the simplest (most parsimonious) model by identifying the station-
arity of data, estimate model parameter values, and checking the validity of the model. The



concept of stationarity is the measure of whether a series of data have a trend or seasonality.
The removal of trend and seasonality was determined to provide a more robust model(Box et
al. 2015). One aspect of these time series models that limit their use is that the data must be
able to be rendered stationary for the models to be valid.

2.3 GARCH Models of Volatility

Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) is an extension to the
1982 Nobel prize winning AutoRegressive Conditional Heteroskedasticity (ARCH) system that
rely on the observation that periods of high volatility tend to cluster together in time (Bollerslev
1986). This allows ARIMA models to capture risk over the timeframe of the model and can
compensate for limitations of the heterskedasticity assumption of an ARIMA model by allowing
variance to be dynamic.

2.4 Vector Autoregressive (VAR) and Multivariate Time Series Analysis

The addition of Vector Autoregression (VAR) models were developed in the early 1980s to
capture the reality of financial markets, that they are influenced by many internal and external
factors such as interest rates, unemployment, current volatility, current pricing levels, and
many others (Sims 1980). These factors have complex and dynamic influence on each other.
VAR models are designed to capture current values and relationships as well as past values
and their relationships. This is in contrast to the commonly 1- or 2-dimensional SARIMA
models capturing linear dynamics over time.

2.5 Quantum Random Forest

Within the scope of my Random Forest (RF) study, traditional Random Forest uses standard
compute approaches. Cloud services such as Amazon Braket provide quantum compute and
compute simulators that add quantum compute paradigms to the RF and other machine
learning algorithms. One of the key capabilities in quantum RF (QRF) is the ability to move
Gini impurity index calculation into a higher dimensional space, which may make the data
more separable (Srikumar, Hill, and Hollenberg 2024).



3 Theoretical Framework

3.1 Random Forest Methodology
3.1.1 Decision Tree Introduction

A decision tree is a structure that captures decisions t0 provide the ability to make decisions
about data. Decision paths are constructed mathematically during model building that provide
guidance through the structure to the bottom of the tree, the final node of which serves as the
prediction. Training begins with a top-level node. Data below this node are split in a manner
that increases the “purity” of one class under analysis. The process is repeated recursively
with the data below each node increasingly partitioned to favor a single class until a stopping
point occurs at which the final “leaf” nodes are composed of only a single class (pure) or a
stopping criteria is hit. Stopping criteria may be maximum depth or minimum samples in a
node.

Mathematically, during recursion we have a dataset D composed of n samples. We perform a
greedy (optimized for the current decision not considering future decisions) search over: - All
classes in the dataset: X, X,,..., X}, - The valid range of values for each class

The objective is to maximize “purity” with a single class dominating each branch until purity
or stopping criteria are reached.

3.1.2 Splitting Criteria

There are different mathematical criteria possible to use to determine splits at each node
but the most common in practice is Gini Impurity, which measures how much each child
node focuses on a single class versus the same measure for the node’s parent. Entropy and
misclassification error are alternatives to Gini Impurity.

Gini Impurity measures the degree of specialization of each child node in comparison to its
parent. Gini Impurity is likewise the probability of misclassification if we randomly assign
class labels based on class distribution at the node. The formula for Gini Impurity is:

where G is the Gini impurity measure of the node, C' is the number of classes in the dataset,
and p, is the proportion of samples in the node that belong to class .

Entropy is the next most widely used splitting criteria measure and is less computationally
efficient than Gini. It uses logarithmic operations to compute how to balance the child nodes.
Also, because it is logarithmic an additional rule must be set for cases where the algorithm



might attempt to perform log(0) at a split. The measure of Entropy is “bits” with values at
the node ranging from 0 indicating the class is pure to log_2(n_ classes) indicating an even
split among classes (highest uncertainty). The formula for Entropy is:

C
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where p, is the proportion of samples in the node that belong to class i.

Gini and Entropy frequently result in analagous tree splits (Raileanu and Stoffel 2004). Because
of this exploration of the ideal splitting criteria measure is recommended but Gini is frequently
used if the dataset or number of classes is large.

3.1.3 Ensemble Learning

Decision trees are very sensitive to the subset of data selected for training and a single tree
will have high variance. The insight of the phenomenon of the “wisdom of crowds”, that a
collection of moderate or poor opinions can be averaged to create a predictor superior to that
of the individuals in it provides the basis for the ensemble learning approach used by Random
Forest. The concept of Bootstrap Aggregation (Bagging) introduced by Breiman (Breiman et
al. 1984) provided the algorithm:

1. Create a dataset for each tree composed of a data subset of roughly equal number of
samples, with replacement

2. Fit a decision tree on each subset. By definition each tree will likely be different.

3. At prediction time take the majority vote across all trees for classification, the mean
prediction across all trees for regression.

If each tree has variance o2 the average variance for B independent predictors is:

B 2

Var(f) = =

This means with ensemble learning with 1000 trees the average variance is 1/1000th that of
an individual tree.

3.1.4 Random Forest Algorithm

In Random Forest the data are sampled B times to produce B trees. Within each tree a subset
of features are selected and the split calculated according to the splitting criteria measure (Gini
or Entropy as above). Each tree is grown down until purity or stopping criteria are reached.
Pruning may occur where nodes are eliminated that provide low value to the prediction.



1 Random Forest Algorithm Pseudocode

# Training:
Input: training data (X, y), number of trees B

For t = 1 to B:
1. Sample n values from the training data.
2. Train a decision tree using the sample:
a. At each split:
- Randomly select a subset of features (m < total features)
- Determine the best split among these features
(unless stopping criteria or full node purity is reached)
b. Repeat recursively for each child node until:
- Maximum depth, minimum samples, or purity criterion is met
3. Save the trained tree T_t

Output: Collection of trained trees {Tree_1, Tree_2, ..., Tree_B}

# Prediction:
Input: A new observation, the tree collection from training phase

For classification:
- Each tree outputs a predicted class
- The most commonly (majority) class is selected as the output

For regression:
- Each tree outputs a numeric prediction
- The output is the average of all predictions

3.1.5 Out-of-Bag Error Estimation

Error estimation for bagging is performed by using out-of-bag (OOB) samples as cross valida-
tion instead of holding out a fraction (70-80% commonly) of the sample in a model validation
set. OOB estimation works by using samples that were not included in the training of the
specific tree to be tested and using those as a validation sample to estimate the model error.
The probability that an observation is not selected in a bootstrap sample is 1 — (1 — 1/n)"
or approximately 37%. Assuming the dataset to be composed of independent and identically
distributed samples this provides a robust and unbiased validation set to measure error rate of
each tree. Further, Breiman also provides an algorithm using OOB predictions and applying



permutation to a single feature in the OOB samples and measure the change in error rate
thereby measuring the importance of each feature in the tree (Breiman et al. 1984)

3.1.6 Hyperparameters and Tuning

Random Forest models are trained and tuned by modifying several hyperparameters that
modify the computational complexity and the variance/bias tradeoff. The maximum depth of
each tree, early stopping criteria, and the number of trees to train provide tuning opportunities
to increase or decrease computational complexity. The number of trees is an important factor
to tune as the higher the number of trees the more stable the model becomes as the variance
decreases for each additional tree trained. The maximum tree depth controls the complexity of
each tree with a low value providing limited predictive power while higher values can capture
complex non-linear relationships but risk overfitting.

To add to the tuning of bias and variance, maximum features per split (m) sets the number
of features selected at each node for splits with lower m potentially creating higher variability
between individual trees while higher m allows a tree to focus on the most important features.
Further bias versus variance tuning can be performed by tuning the maximum number of
samples per leaf and per node with the former establishing if further splits are required and
the latter setting the need to split further. As with maximum tree depth and maximum
features per split tuning these can improve model generalization and reduce tree and model
error.

3.2 Time Series Analysis
3.2.1 Stationarity and Unit Root Tests

Augmented Dickey-Fuller (ADF):

P
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3.2.2 Autocorrelation and Partial Autocorrelation
Autocorrelation function (ACF):
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Partial Autocorrelation Function (PACF):

e = Corr<yt - @t(lu vk — 1), Yk — @t—k(l, vk — 1))

The Partial Autocorrelation Function (PACF) provides the relationship between the observa-
tion and the observation at lag k removing the influence of all shorter lag periods. In viewing
the plot the PACF drops off after lag p in the AR(p) process providing an indicator of the
order of the AR model.

3.2.3 ARMA Model Structure

General ARMA (p,q) model:

P q
Yi=c+ E ¢;Yy i + E 065+ €
i—1 j=1
where ¢, are autoregressive coeflicients and 6, are moving average coefficients

3.2.4 Model Selection Criteria

Note that BIC penalizes model complexity.

AIC and BIC information criteria:
AIC = 2k —21In(L)
BIC = kIn(n) — 2In(L)

where k is the number of parameters, n is sample size, and L is maximum likelihood.

3.2.5 GARCH for Volatility

GARCH:

2 _ 2
oy = agp+ E el
=1
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3.2.6 Trend Removal Through Differencing

Higher-order differencing significantly increases model complexity and risks overfitting. After a
first differencing ACF and PACF plots are examined and/or ADF test if performed to establish
if the data has been made stationary.

First-order differencing:

Y/ =Y, =Y,

3.3 Methodology for Random Forest with Time Series Hybrid Model

To determine an optimal model and the significant features within it I will need to bring
together multiple datasets to build a model that accurately predicts my target variables of
market index direction in 5 and 20 days.

Steps:

1.

Collect, combine, and cleanse datasets: Join pricing and indicator data by trading
day

Use time series analysis to diagnose time-based structures: Run ADF tests, plot
ACF/PACEF, fit ARCH models with various lags, compare AIC/BIC

. Engineer time series features based on diagnostics: Create lag variables for sig-

nificant PACF lags, add rolling windows based on ARCH results

. Add technical indicators: Include standard indicators (MACD, RSI, Bollinger Bands)

used in the literature
Train Random Forest and Quantum Random Forest on augmented feature
set: Build traditional and quantum circuit models and optimize hyperparameters

. Validate with OOB and cross-validation: Perform model quality measurement
. Output feature importance: Outline the greatest contributors to the model and trim

features as appropriate

This approach provides the ability to add some memory of past pricing and effects to the
Random Forest model based on extracted patterns instead of using default lags common to
indicator algorithm default inputs.

11



4 Data and Methods

4.1 Data
4.1.1 Data Sources

To ensure transferability of the approaches used in multiple reference papers I am combining
two data sources to get comprehensive coverage and generate additional features:

1. Kaggle “34-year Daily Stock Data” (Prakash 2024): Provides S&P 500 pricing as
well as macroeconomic indicators (VIX, unemployment, interest rates, and geopolitical
risk indices)

2. Yahoo Finance (Yahoo Finance 2024): Provides OHLC (Open, High, Low, Close)
data and volume for the S&P 500

I limit them to an overlapping period January 1990 to February 2024 resulting in a merged
dataset of ~9,000 daily observations.

4.1.2 Dataset Incoming Features

The combined dataset from Kaggle and Yahoo result in 19 columns representing the pricing,
volume, and macroeconomic features fundamental to establishing pricing patterns. Each row
contains a date column indicating the stock trading date and the relevant metrics for that
date.

Column Data

Name Description Source

dt Date of observation in YYYY-MM-DD format. Kaggle

vix VIX (Volatility Index), a measure of expected market volatility.  Kaggle

sp500 S&P 500 index value, a benchmark of the U.S. stock market. Kaggle

sp500__volume Daily trading volume for the S&P 500. Kaggle

djia Dow Jones Industrial Average (DJIA), another key U.S. market  Kaggle
index.

djia_ volume  Daily trading volume for the DJIA. Kaggle

hsi Hang Seng Index, representing the Hong Kong stock market. Kaggle

ads Aruoba-Diebold-Scotti (ADS) Business Conditions Index, Kaggle
reflecting U.S. economic activity.

us3m U.S. Treasury 3-month bond yield, a short-term interest rate Kaggle
proxy.

joblessness U.S. unemployment rate, reported as quartiles (1 represents Kaggle

lowest quartile and so on).
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Column Data

Name Description Source

epu Economic Policy Uncertainty Index, quantifying policy-related Kaggle
economic uncertainty.

GPRD Geopolitical Risk Index (Daily), measuring geopolitical risk Kaggle
levels.

prev_ day Previous day’s S&P 500 closing value, added for lag-based time  Kaggle
series analysis.

sp500__open Opening price (USD). Yahoo

sp500__high High price for the day. Yahoo

spb00__low Low price for the day. Yahoo

spb00__close Closing price for the day. Yahoo

spb00__adj_ closeAdjusted closing price (accounting for dividends and splits). Yahoo

sp500__ohlc_ voldday trading volume. Yahoo

#| Table 1: Market and Volume Indicators

Market statistics show 8597 samples from 2007-01-19 to 2024-02-16 and prices ranging from
$295.46 to $5029.73 and S&P500 volume ranging from 14,990,000 to 11,456,230,000 shares

traded.

Stat Date

spb00 spb00_ veljime djia_volhsne sp500_ chpia00_ lwigh00_ kpb00_ oyp&)0_ ohlc_ volume

count8597
mean2007-01-
19
10:42:31
min 1990-01-
03
00:00:00
50% 2007-01-
22
00:00:00
max 2024-02-
16
00:00:00
std NaN

8597.08.60e4-033597.08597.00 8597.08596.00 8596.00 8596.008596.00 8.60e+03
1596.63.46e+0913662.3483.17 16763.4696.11 1605.32 1585.881595.90 2.46e+-09

295.461.50e+4-072365.10.59 2736.6@95.46 301.45 294.51 295.45 0.00

1270.20.52e4-0910846.297.83 16803.1@70.09 1277.491261.721270.04 2.52e+-09

5029.73.15e+1M8797.922.68 33154.5029.73 5048.39 5016.835026.83 1.15e+10

1106.24.85e+-09022.86.33.67 7350.10105.71 1111.321099.281105.44 1.85e+-09

#| Table 2: Macroeconomic Indicators

Macroeconomic indicators show interesting information with 8597 rows matched to the market
indicator dataset. The VIX is a volatility index showing how quickly prices are changing and
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ranges from 9.14 to 82.69 with 82.69 indicating high volatility. Aruoba-Diebold-Scotti (ADS)
Business Conditions Index is a measure of US economic activity and implies the current state
of the economy. ADS ranges from -26.42 indicating economic shrinkage and likely recession to
a maximum in this dataset of 9.48. The data are indexed roughly to zero showing no economic
growth or shrinkage. The US 3 month bond yield ranges from 0% yield to maximum of 8.26%
and a mean of 2.69%. Joblessness is unemployment measured in quartiles with lowest quartile
being 1, highest 4. EPU is the Economic Policy Undertainty index measuring uncertainty
related to US economic policy and ranges from 57.20 to 350.46 in this dataset. GPRD is the
Geopolotical Risk Index (Daily) measuring geopolitical risk and ranges from 9.49 to 1045.60
in this dataset with a mean of 109.43.

Stat vix ads us3m joblessness epu GPRD prev__day
count 8597.00 8597.00 8597.00  8597.00 8597.00  8597.00  8597.00
mean 19.56 -0.16 2.69 2.49 115.56 109.44 1596.11
min 9.14 -26.42 0.00 1.00 57.20 9.49 295.46
50% 17.73 -0.05 2.30 2.00 106.12 96.60 1270.09
max 82.69 9.48 8.26 4.00 350.46 1045.60  5029.73
std 7.90 1.65 2.30 1.12 41.58 64.57 1105.71

4.1.3 Dataset Calculated Indicators

The dataset columns “dt” indicating the trading date and “sp500_ close” were used with the
pandas_ ta library to generate technical indicator values commonly used in the literature review
reference papers and cited as common practice (Murphy 1999). The default values were used
for all indicator inputs such as moving average type for Middle Bollinger Bands (typically
20-day simple moving average).

Column Data

Name Description Source

1d_return  Omne-day absolute return of the S&P 500. Derived

macd Moving Average Convergence Divergence (EMA12 — EMA26). Derived

macd_signal Signal line for MACD, typically a 9-day EMA of MACD. Derived

roc Rate of Change indicator showing percentage price change over a Derived
set period.

rsi Relative Strength Index, measures recent price strength and Derived
momentum.

stoch__k Stochastic oscillator %K, compares closing price to recent high-low  Derived
range.

stoch_d Stochastic oscillator %D, a moving average of %K. Derived

adx Average Directional Index, measures the strength of a trend. Derived

14



Column Data

Name Description Source
obv On-Balance Volume, cumulative measure of volume flow with price  Derived
movement.
atr Average True Range, measures market volatility based on recent Derived
price ranges.
bb_upper  Upper Bollinger Band, indicating upper volatility threshold. Derived
bb_middle Middle Bollinger Band, usually a 20-day simple moving average. Derived
bb__lower Lower Bollinger Band, indicating lower volatility threshold. Derived
ema_ 12 12-day Exponential Moving Average. Derived
ema_ 26 26-day Exponential Moving Average. Derived
sma_ 20 20-day Simple Moving Average. Derived
sma, 50 50-day Simple Moving Average. Derived
sma_ 200 200-day Simple Moving Average. Derived

4.1.4 Dataset Engineered Time Series Features

Returns at lag periods identified through time series analysis were added with the AIC and BIC
indicating a potentially significant lag of 1. Rolling mean (through 5- and 20-day simple moving
averages) and standard deviation were added to capture and smooth periodic trending in the
closing prices and supplement the lagged returns with GARCH-aligned volatility metrics

Column Data
Name Description Source
return_ lag 1One-day lagged return value. Derived
return_ lag 2Two-day lagged return value. Derived
return_ lag 3 Three-day lagged return value. Derived
roll_std_5 5-day rolling standard deviation of returns or prices. Derived
roll_std_ 20 20-day rolling standard deviation of returns or prices. Derived

4.1.5 Dataset Engineered Target Variables

The 1, 5, and 20 day direction of the closing price was used to generate potential target
variables for prediction. These direction features were not included as inputs to the model but
reserved for individual Random Forest models designed specifically to predict for that future
period. The creation of models at each future duration also provided the ability to compare
the OOB score for each to determine the most useful model.
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Column Data

Name Description Source

direction__1d Direction of 1-day return (1 = up, 0 = down). Derived
direction 5d Direction of 5-day cumulative return (1 = up, 0 = down). Derived
direction_ 20dDirection of 20-day cumulative return (1 = up, 0 = down). Derived

Distribution of 1-Day Direction Distribution of 5-Day Direction Distribution of 20-Day Direction
5000

5000

2 3000
5

2000
2000

1000
1000 1000

direction_1d direction_5d direction_20d

Figure 1: Distribution of Price Direction

4.1.6 Dataset Correlation Matrix

The clustering of highly correlated features as indicated in the correlation matrix typically
show closely related time periods such as previous and next day returns. This is expected as
large jumps in a market-wide index is rare. Likewise rolling mean and standard deviations are
correlated to price changes over equivalent periods (5 day rolling mean is moderately correlated
to the price changes over that period).

The indicator features roc, rsi, and the stochastics show correlation with lagged values at lags
1, 2, and 11. The high correlation of rolling means to these indicators implies these features
may be incorporated into those derivative indicators (roc, rsi, and stochastic d and k). This
is further supported by the high correlation among these same features.

Within macroeconomic series the VIX (volatility index) is correlated to rolling mean and
standard deviations—large rolling standard deviation implies volatility occurred during that
period. The EPU and joblessness are moderately correlated with rolling standard deviations
implying those indices are likely significant in market-level pricing.

16



Correlation Matrix (Decile Bins)
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Figure 2: Correlation Matrix

4.2 Feature Engineering Pipeline

One valuable aspect of Random Forest is that scaling is not required and the algorithm is
not sensitive to orders-of-magnitude differences in the input variables. Because time series
does require feature scaling all inputs to the Ordinary Least Squarse model produced here to
estimate optimal lag must be scaled if they are not within the same range and distribution.
In this study we are using only the S&P500 closing price for lag determination so scaling will
not be required.
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4.2.1 Time Series Diagnostics

4.2.1.1 Time series model {sec-methods-diagnostics-ts-model}

Testing for stationarity with the Augmented Dickey-Fuller (ADF) indicates a first differencing
of the S&P 500 closing prices to be stationary with ADF of -15.96 at p<0.001. This allows
model building with no further differencing. The first determination of optimal lag is to check
the ACF and PACF plots using the squared residuals from a basic Ordinary Least Squares
(OLS) model.

1 Note

ACF /PACF of OLS Model Squared Residuals

# fit basic regression (OLS)

X = sm.add_constant(np.ones(len(y_diff)))

ols_model = sm.0LS(y_diff.values, X).fit()

squared_resid = ols_model.resid**2 # need squared residuals for ACF/PACF

# plot acf
plot_acf(squared_resid, lags=40, ax=plt.gca())

# plot pact
plot_pacf (squared_resid, lags=40, ax=plt.gca())

ACF of Squared Residuals PACF of Squared Residuals
1.00 1.00

0.75 4 0.75

0.50 4 0.50 1

o e | o ee

—0.25 4 —0.25 4

—0.50 1 —0.50 4

—0.75 A —0.75

-1.00 T T T T T T T T T —1.00 T T T T T T T T T
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 The PACF ShOWS

a strong spike at lag 1 indicating that as potentially significant with smaller spikes at lags 2
and 3. The ACF shows slow decay with a stationary financial time series indicating financial
market volatility clustering. This supports the use of rolling mean and standard deviation to
smooth but capture volatility patterns.

Using lag of 1 and verifying through AIC and BIC measures with maximum 20-day lag period
the optimal lag was at the maximum (20 day) lag indicating the model was low quality and
implying that a GARCH model would be the next phase of analysis in further time series
model building. This is consistent with the ACF interpretation of volatility clustering.
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Despite the poor ARCH(1) model results I generated features for the 1-day absolute and
percent return to provide the temporal features to test their viability in the ultimate Random
Forest model.

4.3 Model Training and Evaluation

4.3.1 Model Evaluation Criteria Selection

To optimize use of the data and to leverage the strength of Random Forest Out-Of-Bag (OOB)
validation I elected to forego the standard 80/20 train/test split and use OOB validation in
the model. As noted previously, OOB validation holds out a random subset of the data each

round of training and uses this set of data as validation. This provides unseen data while not
making this set a fixed series for use by every tree model trained.

4.3.2 Classic Random Forest Model Training

just explain what the model training is doing and point to pseudocode above

4.3.3 Hyperparameter Tuning

Explain grid vs random search, what it’s doing and why I chose random. Highlight my param-
eter space info.

4.3.4 OOB Score and Best Model

put best OOB result

4.3.5 TODO

Do Quantum RF treatment
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